Synthesis and Crystal Chemistry of $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}, \mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$, and $\mathrm{Nd}_{4} \mathrm{Ti}_{9} \mathrm{O}_{24}$

D. KOLAR, S. GABERSCEK, and B. VOLAVSEK
J. Stefan Institute, Ljubljana, Yugoslavia
and H. S. Parker and R. S. ROTH
National Bureau of Standards, Washington, D.C. 20234

Received August 20, 1980; in final form October 22, 1980

Abstract

Two new ternary compounds $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ (1:1:3) and $\mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{19}$ (1:1:5) have been identified in the $\mathrm{BaO}-\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{TiO}_{2}$ system. Single crystals of the compounds were grown and unit cell dimensions and space group symmetry were determined. $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ is orthorhombic with $a=3.8655 \pm 0.0003, b=$ 28.156 ± 0.003 and $c=7.6221 \pm 0.0007 \AA$ and possible space groups are Cmcm or Cmc 2 . The compound melts congruently at $1640 \pm 20^{\circ} \mathrm{C} . \mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$ is also orthorhombic with $a=22.346 \pm$ $0.002, b=12.201 \pm 0.001$ and $c=3.8404 \pm 0.0003 \AA$ and possible space groups are Pbam and Pba2. This compound melts congruently at $1540 \pm 20^{\circ} \mathrm{C}$. Single crystals of the binary compound $\mathrm{Nd}_{4} \mathrm{Ti}_{9} \mathrm{O}_{24}$ were also grown and found to be orthorhombic with $a-35.289 \pm 0.003, b=13.991 \pm 0.001, c=$ $14.479 \pm 0.001 \AA$, space group $F d d d$.

1. Introduction

Dielectric ceramics based on the $\mathrm{BaO}-$ $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{TiO}_{2}$ system are characterized by relatively high permittivity, high temperature stability, and low dielectric losses. As such, they have found important applications in modern electronic practice ($/$). During an investigation of these ceramics, the existence of two hitherto unknown ternary compounds was noted. Consequently, a detailed study of the TiO_{2}-rich part of the $\mathrm{BaO}-\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{TiO}_{2}$ system has been carried out. The work reported in this paper is concerned with the identification and characterization of compounds and their stability relations in the subsystem $\mathrm{BaTiO}_{3}-$ $\mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}-\mathrm{TiO}_{2}$.

2. Experimental

The starting materials ${ }^{1}$ were reagentgrade barium carbonate, titanium dioxide (99.5% pure), neodymium oxide ($>99.9 \%$ pure), and reagent grade barium titanate. Appropriate proportions of the powdered materials were mixed under alcohol, dried, and pressed into pellets. Samples were calcined at $1300-1400^{\circ} \mathrm{C}$ for prolonged periods with intermittent cooling, crushing, mixing, and pressing to ensure homogeneity and to attain equilibrium. The fired samples were examined by X-ray powder diffraction. For routine phase identification, X-ray powder patterns were ob-

[^0]tained in a Guinier-type focusing camera using Ni -filtered $\mathrm{CuK} \alpha$ radiation.

Single crystals of the compounds were grown from the melt in small sealed Pt tubes or from the BaO -rich flux. Precision lattice parameters measurements were obtained by least-squares refinement of diffraction data collected with a high-angle recording diffractometer using Ni -filtered $\mathrm{Cu} K \alpha$ radiation. Indexing of the powder patterns was accomplished by reference to the single-crystal diffraction data obtained with a Buerger precession camera.

Reflected-light microscopy was used extensively throughout the phase analysis and for the determination of the correct compositions of the compounds by observation of small amounts of secondary phases in the microstructure. The correctness of the composition of the new compounds was also confirmed by scanning electron microscopy. Melting behavior was investigated by a hot-stage microscope. Density of the compounds was determined by pycnometric method using hexane as the immersion liquid.

3. Results and Discussion

Two new ternary compounds were identified in the system. Chemical compositions as ascertained by the combination of metallography, electron microanalysis, and X -ray investigations were found to be $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ and $\mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$, respectively.

The composition $\mathrm{BaO}: \mathrm{Nd}_{2} \mathrm{O}_{3}: 3 \mathrm{TiO}_{2}$ (1:1:3) (prepared using a less pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$) was calcined at $1425^{\circ} \mathrm{C}$ for 183 hr with periodic grindings to yield a product consisting primarily of $1: 1: 3$ with only small amounts of $\mathrm{BaTiO}_{3}, \mathrm{TiO}_{2}$, and an unidentified phase remaining. A sample of this calcined material, heated at $1625^{\circ} \mathrm{C}$, was completely melted. Small single crystals of the 1:1:3 compound were selected from the melted material. Crystals of
$\mathrm{Nd}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{TiO}_{2}$ were also found in this melted sample. X-Ray diffraction of a similar completely melted specimen indicated the presence of $1: 1: 3$ as the major phase with minor amounts of BaTiO_{3} and several other phases. The $1: 1: 3$ phase was found to be orthorhombic with cell parameters ${ }^{2}$ obtained from an unmelted specimen prepared with more pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$ of $a-3.8655$ $\pm 0.0003, b=28.156 \pm 0.003, c=7.6221 \pm$ $0.0007 \AA$ with a C-centered cell, $h k l: h+k$ $=2 n$ and $h 0 l: l=2 n$. The possible space groups are thus No. 63 Cmcm or No. 36 Cmi 2. Calculated density $\rho=5.845 \mathrm{~g} / \mathrm{cm}^{3}$ compared reasonably well with the experimentally determined powder density of $\rho=$ $5.66 \mathrm{~g} / \mathrm{cm}^{3}$. The compound melts congruently at $1640 \pm 20^{\circ} \mathrm{C}$. The indexed X-ray diffraction powder pattern is listed in Table I.

An essentially single-phase composition of $\mathrm{BaO}: \mathrm{Nd}_{2} \mathrm{O}_{3}: 5 \mathrm{TiO}_{2}$ (1:1:5), prepared by calcining the constituent oxides, using the less pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$, for 60 hr at $1350^{\circ} \mathrm{C}$ and 12 hr at $1375^{\circ} \mathrm{C}$ with periodic grindings, was used for the preparation of small single crystals of this compound. Heating the calcined material for 25 hr at $1400^{\circ} \mathrm{C}$ in a small sealed platinum tube followed by quenching in water resulted in a product showing traces of melting, primarily composed of small, acicular crystals of 1:1:5. XRay diffraction showed only the 1:1:5 phase, identical to the $1375^{\circ} \mathrm{C}$ calcined material. The compound is orthorhombic with unit cell parameters obtained from an unmelted specimen prepared from more pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$ of $a=22.346 \pm 0.002, b=12.201 \pm$ 0.001 and $c=3.8404 \pm 0.0003 \AA$. The extinction rules appear to be $0 \mathrm{kl}: \mathrm{k}=2 n$ and $h 0 l: h=2 n$, so the possible space

[^1]TABLE I
Indexed X-Ray Diffraction Powder Pattern for the Compound $\mathrm{BaO} \cdot \mathrm{Nd}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{TiO}_{2}$

h	k	Q-1/	$\mathrm{d}_{\text {obs }}$	${ }^{2 \theta} \mathrm{calc}$	$2 \theta_{\text {obs }}$	$\mathrm{I} / \mathrm{I}_{0}$
0	2	0	14.09	6.27	6.27	10
0	6	0	4.687	18.90	18.92	33
1	1	0	3.829	23.21	23.21	11
0	0	2	3.815	23.32	23.30	15
1	3	0	3.574	24.89	24.89	6
1	1	1	3.422	26.02	26.02	18
1	3	1	3.236	27.54	27.54	12
1	5	0	3.186	27.97	27.98	24
0	6	2	2.959	30.19	30.18	100
1	5	1	2.939	30.38	30.39	20
1	7	0	2.786	32.09	32.10	60
1	1	2	2.700	33.14	33.15	57
1	7	1	2.617	34.23	34.23	7
0	8	2	2.5860	34.67	34.66	7
1	5	2	2.4436	36.73	36.75	5
0	12	0	2.3458	38.33	38.34	18
1	9	1	2.3168	38.84	38.84	6
1	7	2	2.2495	40.05	40.05	45
1	1	3	2.1168	42.67	42.68	8
1	3	3	2.0715	43.68	43.66	6
1	11	1	2.0554	44.03	44.02	8
1	9	2	2.0496	44.14	44.15	7
0	14	0	2.0108	45.04	43.03	18
0	12	2	1.9986	45.35	45.34	12
1	5	3	1.9870	45.63	45.62	3
2	0	0	1.9333	46.98	46.96	21
2	2	0	1.9149	47.44	47.44	3
0	0	4	1.9058	47.69	47.68	18
1	13	0	1.8901	48.12	48.10	5
0	2	4	1.8883	48.15	48.15	5
2	6	0	1.7873	51.07	51.06	5
0	6	4	1.7651	51.74	51.75	6
0	16	0	1.7603	51.92	51.90	6
2	6	1	1.7401	52.56	52.55	2
2	0	2	1.7239	53.09	53.08	4
1	13	2	1.6930	54.13	54.13	32
1	15	0	1.6886	54.29	54.28	22
1	5	4	1.6354	56.20	56.20	5
2	6	2	1.6180	56.86	56.86	22
1	7	4	1.5730	58.64	58.64	18
2	8	2	1.5476	59.68	59.70	3
1	15	2	1.5432	59.86	59.89	6

1/ Indexed, with the aid of single crystal precession patterns, on the basis of an orthorhombic unit cell with $a=3.8655 \pm .0003$, $\underline{\mathrm{b}}=28.156 \pm .003, \underline{\mathrm{c}}=7.6221 \pm .0007 \mathrm{~A}$, although electron diffraction indicates the true unit cell as twice the listed a value.
groups are No. 55, Pbam and No. 32, Pba2. Calculated density $\rho=5.62 \mathrm{~g} / \mathrm{cm}^{3}$ compares reasonably well with the pycnometrically determined powder density of 5.44 $\mathrm{g} / \mathrm{cm}^{3}$. The compound, prepared from a more pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$, melts congruently at $1540 \pm 20^{\circ} \mathrm{C}$. The indexed X-ray diffraction powder pattern is listed in Table II.

To establish the subsolidus phase relations in the $\mathrm{BaTiO}_{3}-\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ subsystem, the pseudobinary joins had to be known. The $\mathrm{BaTiO}_{3}-\mathrm{TiO}_{2}$ join has been reexamined recently $(2,3)$ and the existence of $\mathrm{Ba}_{6} \mathrm{Ti}_{17} \mathrm{O}_{40}, \mathrm{Ba}_{4} \mathrm{Ti}_{13} \mathrm{O}_{30}, \mathrm{BaTi}_{4} \mathrm{O}_{9}$, and $\mathrm{Ba}_{2} \mathrm{Ti}_{9} \mathrm{O}_{20}$ were reported. In the join $\mathrm{BaTiO}_{3}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ no binary compound was

TABLE II
Indexed X-Ray Diffraction Powder Pattern for the Compound $\mathrm{BaO} \cdot \mathrm{Nd}_{2} \mathrm{O}_{3} \cdot \mathrm{STiO}_{2}$

6	k	$21 /$	$\mathrm{d}_{\text {obs }}$	${ }^{2 \theta} \mathrm{calc}$	${ }^{29}$ obs	I/ I_{0}
2	0	0	11.20	7.91	7.89	10
1	1	0	10.12	8.25	8.24	3
0	2	0	6.09	14.51	14.53	3
4	1	0	5.08	17.45	17.43	16
5	1	0	4.197	21.15	21.15	14
1	3	0	4.003	22.20	22.19	10
0	0	1	3.841	23.14	23.14	12
2	3	0	3.819	23.26	23.27	15
2	0	1	3.633	24.49	24.48	5
5	2	0	3.607	24.67	24.66	4
2	1	1	3.482	25.57	25.56	7
0	2	1	3.251	27.42	27.41	18
6	2	0	3.180	28.05	28.04	22
4	1	1	3.064	29.13	29.12	45
3	2	1	2.978	29.97	29.98	16
2	4	0	2.943	30.35	30.35	20
5	1	1	2.833	31.55	31.56	100
	3	1	2.770	32.28	32.29	28
8	1	0	2.723	32.87	32.87	12
2	3	1	$? .710$	33.04	33.03	58
4	4	0	2.677	33.44	33.45	14
5	2	1	2.629	34.08	34.08	17
3	3	1	2.614	34.27	34.28	30
6	1	1	2.611	34.31	34.32	17
8	2	0	2.5392	35.31	35.32	5
2	5	0	2.3835	37.70	37.71	3
2	4	1	2.3364	38.51	38.50	6
9	2	0	2.3003	39.1 .4	39.13	9
7	2	1	2.2768	39.54	39.55	29
3	4	1	2.2735	39.59	39.61	24
8	1	1	2.2213	40.58	40.58	4
$\{10$	1	$\left.{ }_{1}\right\}$	2.1970	\{41.03?		
14	4	$1\}$	2.1970	$41.07{ }^{1}$	41.03	12
5	5	0	2.1422	42.16	42.15	12
$\left\{\begin{array}{l}9 \\ 8\end{array}\right.$	3	$\left.{ }^{0}\right\}$	2.1187	$\{42.63\}$		
'8	2	$1)$	2.1187	42.65^{1}	42.64	14
5	4	1	2.1074	42.90	42.88	5
10	2	0	2.0990	43.08	43.06	24
0	6	0	2.0348	44.52	44.49	4
11.	1	0	2.0049	45.21	45.19	8
2	6	0	2.0011	45.29	45.28	8
9	2	1	1.9726	45.96	45.97	2
3	6	0	1.9610	45.24	45.26	8
7	5	0	1.9388	46.82	46.82	12
0	0	2	1.9202	47.30	47.30	35
15	5	$1{ }_{2}$	1.8708	$\{48.64\}$		5
12	1	2	1.8708	$\{48.65\}$	48.63	5
5	6	0	1.8504	49.19	49.20	8
12	1	0	1.8403	49.47	49.49	5
11	3	0	1.8169	50.16	50.17	3
4	1	2	1.7965	50.79	50.78	6
1	6	1	1.7916	50.94	50.93	3
12	2	0	1.7808	51.25	51.26	4
11	1	1	1.7763	51.39	51.40	12
2	6	1	1.7740	51.46	51.47	9
3	6	1	1.7472	52.33	52.32	5
$\left\{\begin{array}{l}1 \\ 7\end{array}\right.$	3 5	$\left.{ }_{1}^{2}\right\}$	1.7309	$\left\{\begin{array}{l}52.84 \\ 52.86\end{array}\right\}$	52.85	20
9	4	1	1.7212	53.17	53.17	12
12	0	1	1.6758	54.74	54.73	7
12	1	1	1.6599	55.30	55.30	7
4	3	2	1.6585	55.36	53.35	5
$\{6$	2	${ }^{2}$ \}	1.6429	$\{55.90\}$	55.92	4
111	3	1	1.6429	155.931	55.9	
5	7	0	1.6240	56.64	36.63	5
2	4	2	1.6076	57.24	57.26	8
3	4	2	1.5876	58.05	58.05	22
9	5	1	1.5849	58.15	58.16	34
1	7	1	1.5834	58.23	58.22	25
2	7	1	1.5708	58.71	58.73	11
8	1	2	1. 5691	58.80	58.80	5
4	4	2	1.5600	59.17	59.18	4

[^2]found to exist. In the join $\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ the existence of orthorhombic $\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ had been reported (4) and monoclinic unit cell dimensions are reported for $\mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ $(5,6)$. Recently, a binary compound with a molar ratio $\mathrm{TiO}_{2}: \mathrm{Nd}_{2} \mathrm{O}_{3} 4: 1$ has been reported however, the homogeneity range of the compound was found to extend up to the composition $\mathrm{TiO}_{2}: \mathrm{Nd}_{2} \mathrm{O}_{3}=9: 2(7)$.

In the present investigation, single crystals of the TiO_{2}-rich phase in the $\mathrm{Nd}_{2} \mathrm{O}_{3}-$ TiO_{2} binary system were grown from a BaO -containing flux. The addition of small amounts of BaO , to act as a "flux" and also shift the composition to a point where the compound was the primary phase, allowed the growth of small crystals of the compound. A composition of $2.5 \mathrm{BaO}: 17.5 \mathrm{Nd}_{2} \mathrm{O}_{3}: 80 \mathrm{TiO}_{2}$ was heated at $1450^{\circ} \mathrm{C}$ for 91 hr in a small sealed platinum tube and quenched into water. The X-ray diffraction pattern showed the crystals to be identical with the compound described in Ref. (7). Analysis of the single-crystal Xray data confirmed that the unit cell had orthorhombic symmetry as suggested in Ref. (7), but with a considerably larger unit cell. Precision unit cell dimensions obtained from a single-phase unmelted specimen using more pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$ are $a=35.289$ $\pm 0.003, b=13.991 \pm 0.001, c=14.479 \pm$ 0.001 A . The extinction rules found were $h k l: h+k, k+l, l+h=2 n ; 0 k l: k+l=$ $4 n: h 0 l: l+h=4 n: h k 0: h+k=4 n$. The space group was thus determined as No. 70 Fddd. On the basis of the indexing of powder data it can be concluded that the compound is better described as a $2: 9$ phase rather than a $1: 4$ phase, indicating the correct formula as $\mathrm{Nd}_{4} \mathrm{Ti}_{9} \mathrm{O}_{24}$. The indexed X-ray diffraction powder pattern is listed in Table III.

To establish the subsolidus phase relations in the $\mathrm{BaTiO}_{3}-\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ system, 57 ternary compositions were fired and examined by X -ray powder diffraction. The phase diagram $\mathrm{BaTiO}_{3}-\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ con-

Fig. 1. Subsolidus equilibria in the system $\mathrm{BaTiO}_{3}{ }^{-}$ $\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ showing various experimental compositions and tie lines. Scale in mole $\%$.
structed on the basis of this analysis and previously known data is shown in Fig. 1.

The binary joins $\mathrm{BaTiO}_{3}-\mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ and $\mathrm{TiO}_{2}-\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ were also examined by metallography. The data obtained were consistent with those obtained by X-ray and scanning electron microscopy. Figure 2 shows the microstructure of a sample with molar ratio $\mathrm{BaTiO}_{3}: \mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}=70: 30$. Elongated grains of $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ were observed in the BaTiO_{3} matrix. Figure 3 shows the elongated grains of pure $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ compound under higher

Fig. 2. Microstructure of sintered ceramic with the composition 70 mole $\% \mathrm{BaTiO}_{3}-30$ mole $\% \mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$. Needlelike crystals of $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ and BaTiO_{3} grains may be distinguished ($300 \times$).
Indexed X-Ray Diffraction Powder Pattern for the Compound $2 \mathrm{Nd}_{2} \mathrm{O}_{3} \cdot 9 \mathrm{TiO} \mathrm{O}_{2}$

h	k	:1]	$\mathrm{d}_{\text {obs }}$	${ }^{20} \mathrm{calc}$	20 obs	I/I。	h	k	$\ell^{1 /}$	dobs	${ }^{24}$ calc	${ }^{20}$ obs	I/Io
5	1	1	5.78	15.32	25.32	12	17	1	3	1.8901	48.12	48.10	10
0	2	2	5.0 .1	17.62	17.63	10	$\left\{\begin{array}{r}18 \\ 1\end{array}\right.$	2	$\left.{ }_{7}\right\}$	1.8876	$\left\{\begin{array}{l}48.17 \\ 48.18\end{array}\right\}$	48.17	9
3	3	1	4.149	21.38	21.40	10	1	3	7	1.8876	'48.18)	48.17	9
9	1	2	3.658	24.35	24.31	4	16	0	4	1.8832	48.29	48.29	5
0	0	4	3.622	24.59	24.56	5	6	4	6	1.8817	48.34	48.33	6
0	4	0	3.497	25.45	25.45	5	7	5	5	1.8683	48.70	48.70	2
4	0	4	3.345	26.61	26.63	85	$1{ }_{16}$	3	${ }_{0}^{7}$				
8	2	?	3.317	26.86	26.86	47	${ }_{16}$	4	0	1.8657	\{48.77 ${ }^{\text {S }}$	48.77	2
4	4	0	3.250	27.41	27.42	100	6	6	4	1.8600	48.95	48.93	2
3	3	3	3.222	27.64	27.66	10	1	7	3	1.8445	49.39	49.37	2
10	0	2	3.172	28.11	28.11	18	5	3	7	1.8254	49.92	49.92	4
10	2	0	3.149	28.30	28.32	11	3	7	3	1.8237	49.96	49.97	4
2	4	2	3.100	28.78	28.78	3	9	1	7	1.8129	50.28	50.29	3
5	3	3	3.028	29.47	29.48	20	0	0	8	1.8088	50.41	50.41	16
9	1	3	2.972	30.03	30.04	33	12	2	6	1.8021	50.62	50.61	25
9	3	1	2.938	30.39	30.40	22	12	6	2	1.7711	51.55	51.56	30
	2	4	2.817	31.71	31.74	12	0	8	0	1.7494	52.27	52.25	8
7	3	3	2.790	32.03	32.06	15	14	0	6	1.7435	52.47	52.44	5
1	5	1	2.736	32.67	32.71	6	10	4	6	1.7303	52.87	52.87	4
3	5	1	2.676	33.47	33.46	3	10	6	${ }_{4}^{4}$ \}	1.7137	\{53.43\}		18
11	1	3	2.621	34.15	34.18	13	'19	3	1	1.7137	153.43'	33.42	18
13	1	1	2.619	34.19	34.21	18	9	3	7	1.7019	53.81	53.82	8
11	3	I	2.601	34.47	34.46	7	15	5	3	1.6871	54.34	54.33	18
12.	2	2	2.5378	35.33	35.34	15	0	6	6	1.6761	54.71	54.72	6
0	4	4	2.5144	35.68	35.68	35	17	$\frac{1}{7}$	5	1,6750	54.77	54.76	6
	0	6	2.3890	37.61	37.62	11	9	7	3	1.6710	54.92	54.90	6
10	4	2	2.3476	38.28	38.31	6	14	6	2	1.6663	55.09	55.07	4
11	3	3	2.3156	38.82	38.86	6	17	5	1	1.6563	55.43	55.43	4
9	1	5	2.2985	39.19	39.16	5	1_{13}^{6}	1	$\left.{ }_{2}^{7}\right\}$	1.6333	$\left\{\begin{array}{l}56.28 \\ 56.28\end{array}\right\}$	56.28	3
12	0	4	2.2823	39.46	39.45	17	6	8	2	1.6333	'56.28)	56.28	7
	4			$\{40.02\}$			11	3	7	1.6285	56.47	56.46	7
${ }^{9} 9$	5	$1{ }^{\prime}$	2.2500	$\left.{ }_{40.04}\right\}$	40.04	10	19	3	3	1.62/8	56.61	56.60	7
6	0	6	2.2319	40.39	40.38	10	13	5	5	1.6156	56.93	56.95	4
4	2	6	2.2068	40.85	40.86	11	11	7	3	1.6002	57.55	57.55	4
8	4	4	2.1843	41.30	41.30	9	${ }_{1} 8$	8	${ }^{2} 1$		\{58.11\}		
6		0	2.1682	41.63	41.62	9	17	3	5,	1.5861	\{58.11\}	58.11	3
4	6	2	2.1529	41.94	41.93	8	120	0	$4)$		¢58.12		
13	3	3	2.1092	42.83	42.84	12	4	4	8	1.5807	58.33	58.33	6
15	1	3	2.0916	43.24	43.22	3	17	5	3	1.5755	58.53	58.54	9
9	3	5	2.0824	43.40	43.42	3	0	8	4	1.5745	58.58	58.58	6
15		1	2.0792	43.50	43.49	4	10	2	8	1.5694	58.82	58.79	9
10	4	4	2.0474	44.19	44.20	3	8	6	6	1.5672	58.89	58.88	12
8	2	6	2.0248	44.71	44.72	4	16	6	$?$	1. 5648	59.00	58.98	7
16	2	2	2.0206	44.84	44.82	4	22	2		1.5633	59.04	59.04	8
10	0	6	1.9907	45.52	45.53	3	14			1.5597	59.19	59.19	2
114	2						13	?	7	1.5507	59.56	59.57	6
'8	6	2	1.9828	\{45.73 ${ }^{4}$	45.72	7	$\left\{{ }_{6}^{4}\right.$	8	4	1.5500		59.60	6
1	7	1	1.9779	45.87	45.84	7	16	4	8	1.5500	${ }^{159.61}{ }^{\prime}$	59.60	8
14	4	2	1.9686	46.09	46.07	15	14	6	1	1.5469	59.72	59.73	\bigcirc
5	1	7	1.9646	46.18	46.17	14	1_{10}	9	${ }_{2}{ }^{3}$	1.5320	$\left\{\begin{array}{l} 60.35 \\ 60.40 \end{array}\right\}$	60.37	2
2	6	4	1.9470	45.59	46.61	10	10	8	$2{ }^{2}$,	$160.40^{\}}$	60.37	
15	3	3	1.9264	47.16	47.14	3	22	2	2	1.5281	60.54	60.54	2
5	7	1	1.9000	47.67	47.66	3	12	8		1.5026	61.66	61.68	2
7	1	7	1.8950	47.97	47.97	7	21	3	3	1.5019	61.70	61.71	2
18	0	2	1.8927	48.04	48.03	8							

Fig. 3. SEM picture of needlelike crystals of $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}(6000 \times)$.
magnification (SEM picture). These elongated grains are actually cross sections through the platy-like structure of $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$. Figure 4 shows the microstructure of the $\mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$ compound.

4. Summary and Conclusions

(1) Subsolidus compatibility relations in the subsystem $\mathrm{BaTiO}_{3}-\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{TiO}_{5}$ were established using X-ray powder diffraction.
(2) Two new ternary compounds, $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ and $\mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$ were syn-

Fig. 4. Microstructure of sintered ceramic with the composition $\mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}(198 \times)$.
thesized. The compounds melt congruently at $1640 \pm 20^{\circ} \mathrm{C}$ and $1540 \pm 20^{\circ} \mathrm{C}$, respectively.
(3) Single crystals of both the compounds were obtained and unit cell dimensions and space group symmetry determined. $\mathrm{BaNd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ is orthorhombic with unit cell parameters $a=3.8655 \pm 0.0003, b$ $=28.156 \pm 0.003$, and $c=7.6221 \pm 0.0007$ \AA. The possible space groups are No. 63 Cmom or No. $36 \mathrm{Cmc} 2 . \mathrm{BaNd}_{2} \mathrm{Ti}_{5} \mathrm{O}_{14}$ is orthorhombic with $a=22.346 \pm 0.002, b=$ 12.201 ± 0.001, and $c=3.8404 \pm 0.0003$ \AA. Possible space groups are No. 55 Pbam and No. 32 Pba2. Indexed X-ray diffraction powder patterns are listed.
(4) Single crystals of the orthorhombic phase in the system $\mathrm{TiO}_{2}-\mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ were obtained and the unit cell examined. Anaiysis of the single-crystal data suggest that the correct composition is $\mathrm{Nd}_{4} \mathrm{Ti}_{9} \mathrm{O}_{24}$. The structure is orthorhombic with $a=35.289$ $\pm 0.003, b=13.991 \pm 0.001$ and $c=14.479$ $\pm 0.001 \AA$. The space group is No. 70 Fdd .

References

l. D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov, Ber. Deut. Keram. Ges. 55, 346-348 (1978).
2. T. Negas, R. S. Roth, H. S. Parker, and D. B. Minor, J. Solid Siate Chem. 9, 297 (1974).
3. H. M. O’Bryan, Jr., and J. Thomson, Jr., J. Amer. Ceram. Soc. 57, 522 (1974).
4. L. G. Scerbakova, A. N. Lubacev, V. A. Kuznecov, V. B. Gluskova, and G. E. Suhanova, Dok. Akad. Nauk SSSR 225, 890-893 (1975).
5. F. Queyroux, M. Huber, and R. Collongues, C. R. Acad. Sci. Paris Ser. C 270, 806-808 (1970).
6. M. Kimura, S. Nanamatsu, T. Kawamura, and S. Matsushita, Japan J. Appl. Phys. 13, 14731474 (1974).
7. D. Kolar, B. Volavsek, A. Barbulescu, and S. Gaberscek, J. Less-Common Metals 60, 137-141 (1978).

[^0]: ${ }^{1}$ Used at J. Stefan Institute, Ljubljana, Yugoslavia.

[^1]: ${ }^{2}$ Electron diffraction patterns made by A. Olsen and R. S. Roth at Arizona State University revealed that the a axis is really doubled ($a=7.722$) although the extra spots requiring this doubled cell are very weak. Results of this electron diffraction and high-resolution lattice image study will be published in the near future.

[^2]: 1/ Indexed, with the aid of single crystal precession patterns, on an orthorhombic unit ce11 with $a=22.346 \pm .002, b=12.201 \pm .001$, ᄃ $-3.8404 \pm .0003 \mathrm{~A}$.

